A importância do ponto de operação nas técnicas de self-optimizing control

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Schultz, Eduardo dos Santos
Orientador(a): Farenzena, Marcelo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/127932
Resumo: A otimização de processos vem se tornando uma ferramenta fundamental para o aumento da lucratividade das plantas químicas. Diversos métodos de otimização foram propostos ao longo dos anos, sendo que a otimização em tempo real (RTO) é a solução mais consolidada industrialmente, enquanto que o self-optimizing control (SOC) surge como uma alternativa simplificada, com um menor custo de implantação em relação a esse. Neste trabalho são estudados diversos aspectos da metodologia de SOC, iniciando pela análise do impacto do ponto de operação para o desenvolvimento de estruturas de controle auto-otimizáveis. São propostas modificações na formulação do problema de otimização de SOC de modo que as variáveis controladas sejam determinadas no mesmo problema de otimização em que é escolhido o ponto de operação, permitindo a redução da perda do processo. De forma a analisar a influência da dinâmica nos resultados obtidos, é realizado um estudo comparativo da perda gerada no processo ao longo da operação para as estruturas de otimização baseadas em RTO e em SOC. Com base nos resultados obtidos para uma unidade didática, mostra-se que o comportamento dinâmico do distúrbio possui grande influência na escolha da técnica de otimização, quebrando a ideia de que o RTO é um limite superior do SOC. A aplicação industrial das técnicas clássicas de SOC é validada em uma unidade de separação de propeno, baseada em uma unidade real em operação. A partir da modelagem do processo em simulador comercial, foram geradas as variáveis controladas que permitam uma perda aceitável para a unidade, comprovando a viabilidade de implantação da metodologia em unidades reais.