Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Branco, Flavia Malta |
Orientador(a): |
Lopes, Artur Oscar |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/3406
|
Resumo: |
Consideramos um potencial A α-Hölder e uma função ƒ: S1 ! S1, C2 e de grau 2 tal que a origem é um ponto crítico (ƒ´(0) = 0) e ƒ é uniformemente expansiva a menos de um intervalo [0, α+ε). Neste trabalho mostramos que, para um potencial genérico A, a medida invariante para ƒ que maximiza a ação dada por integral Adμ é única e unicamente ergódica no seu suporte. Estimamos também o comportamento assintótico de integrais que dependem de um parâmetro ξ ε R determinando cotas superiores para o limite lim sup 1/ξ log integral e»ª(x)d¹»(x); onde μξ é o estado de equilíbrio para o potencial ξA e as funções A e Ψ são α-Hölder. |