Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Becker, Henrique |
Orientador(a): |
Buriol, Luciana Salete |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/163413
|
Resumo: |
Uma revisão dos algoritmos e conjuntos de instâncias presentes na literatura do Problema da Mochila com Repetições (PMR) é apresentada nessa dissertação de mestrado. Os algoritmos e conjuntos de instâncias usados são brevemente descritos nesse trabalho, afim de que o leitor tenha base para entender as discussões. Algumas propriedades bem conhecidas e específicas do PMR, como a dominância e a periodicidade, são explicadas com detalhes. O PMR é também superficialmente estudado no contexto de problemas de avaliação gerados pela abordagem de geração de colunas aplicada na relaxação contínua do Bin Packing Problem (BPP) e o Cutting Stock Problem (CSP). Múltiplos experimentos computacionais e comparações são realizadas. Para os conjuntos de instâncias artificiais mais recentes da literatura, um simples algoritmo de programação dinâmica, e uma variante do mesmo, parecem superar o desempenho do resto dos algoritmos, incluindo aquele que era estado-da-arte. O modo que relações de dominância é aplicado por esses algoritmos de programação dinâmica têm algumas implicações para as relações de dominância previamente estudadas na literatura. O autor dessa dissertação defende a tese de que a escolha dos conjuntos de instâncias artificiais definiu o que foi considerado o melhor algoritmo nos trabalhos anteriores. O autor dessa dissertação disponibilizou publicamente todos os códigos e conjuntos de instâncias referenciados nesse trabalho. |