Modelagem matemática do espalhamento do poluente mercúrio na água

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Conza, Adelaida Otazu
Orientador(a): De Bortoli, Álvaro Luiz
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/169289
Resumo: O objetivo deste trabalho e a modelagem matem atica da propagaçãao do poluente mercúrio na agua. O modelo bidimensional consiste na drenagem da agua atrav es de um canal, onde o poluente (mercúrio) entra. O modelo consiste em um conjunto de equaçõoes diferenciais parciais: as equações para a conservação da massa, a quantidade de movimento, e a concentração das espécies, sujeitas a condições iniciais e de contorno apropriadas. Estas equações foram discretizadas pelo método de diferenças finitas centrais, gerando sistemas lineares que foram resolvidos pelo método de Gauss-Seidel e a convergência foi acelerada usando a técnica de sobre-relaxações SOR. A an alise da consistência e estabilidade da equação de concentração foi feita. Além disso, a solução analítica da equação de concentração, que e uma equação diferencial parcial bidimensional não homogênea com uma condição de contorno não homogênea, foi obtida com a transformada de Laplace. Os resultados obtidos a partir do modelo numérico e da solução analítica foram comparados e apresentam concordância razoável.