Projeto inverso aplicado à modelagem de sistemas de acumulação de energia térmica sensível

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Andriotty, Tiago Haubert
Orientador(a): Schneider, Paulo Smith
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/189945
Resumo: Esta Tese desenvolve uma metodologia de dimensionamento para sistemas de acumulação de calor sensível (Sensible Thermal Energy Storage System T3S) baseada na filosofia de Projeto Inverso. O T3S opera como um retificador térmico, alimentado por uma fonte com variação cíclica senoidal da temperatura do fluido de trabalho e entrega uma saída retificada desse mesmo fluido. O objetivo do retificador é proporcionar uma operação estável do sistema, diminuindo picos e vales da fonte de entrada, garantida pelo material de acumulação térmica (Heat Storage Material HSM) disposto em placas planas paralelas. A modelagem escolhida para descrever o T3S é uma formulação global ou lumped, implementada pelo Lumped Element Model LEM, capaz de representar as principais características do sistema de acumulação de calor sensível: a geometria, as propriedades do material de acumulação e a energia térmica transportada pelo fluido. Através da combinação das estratégias one-factor-at-a-time OFAT e line search é encontrada a mínima massa de HSM que garante uma determinada capacidade de retificação (definida pala razão entre as amplitudes da temperatura do fluido na saída e na entrada do T3S). A presente Tese é composta por três artigos. O primeiro (Capítulo 2) aplica a metodologia de planejamento de experimentos Box-Behnken para investigar os desvios do modelo LEM para a amplitude e o deslocamento de fase da temperatura do fluido na saída do T3S em relação a simulações detalhadas em CFD. Os resultados mostram que os desvios para a amplitude são inferiores a 2% em aproximadamente 80% dos casos simulados, enquanto os desvios para o deslocamento de fase não ultrapassam 4%, com apenas um caso fora desse limite. O segundo artigo (Capítulo 3) apresenta a minimização da massa de HSM do T3S para uma condição de operação particularizada. O objetivo é encontrar a menor massa de HSM e sua melhor distribuição (comprimento da placa e distância entre as placas) para retificar a amplitude da temperatura do fluido na entrada, de 30°C, para uma amplitude na saída de 4°C. Infinitas combinações de comprimento e distância entre as placas para a mínima massa de HSM garantem a retificação projetada, porém sempre resultando em um valor ótimo para o Número de Trocas Unitário NTU (4,03) e para a constante de tempo τ (3.230s). O terceiro artigo (Capítulo 4) generaliza os resultados do artigo anterior e apresenta uma metodologia de dimensionamento para T3S operando como um retificador térmico. A aplicação do Projeto Inverso gera uma curva de ajuste para o NTU e outra para o τ, empregadas para dimensionar o T3S submetido a diversas condições de entrada do fluido de trabalho, propriedades do HSM e capacidades de retificação. O caso de estudo apresentado particulariza a obtenção do comprimento, da espessura e da distância entre v as placas do HSM que garantem a retificação projetada, com auxílio de gráficos parametrizados. Os resultados são comparados com simulações pelo método de volumes finitos CFD, mostrando desvios inferiores a 1,5%. O capítulo final sumariza as principais conclusões de cada artigo e propõe o prosseguimento desse estudo.