Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Moraes, Sofia Royer |
Orientador(a): |
Mendes Junior, Claudio Wilson |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/180505
|
Resumo: |
O monitoramento, a previsão e o controle de eventos extremos, como as inundações, é imprescindível, principalmente em áreas urbanas, devido à maior densidade populacional, bens materiais, saneamento e infraestruturas envolvidos no processo. O objetivo deste estudo, consistiu em classificar de forma automática o uso e cobertura da terra em área urbana, em um ortofotomosaico com altíssima resolução espacial (16 cm), cobrindo a área do bairro centro de Lajeado (Estado do Rio Grande do Sul – Brasil) e sua posterior aplicação, com dados dos arruamentos e de um Modelo Digital de Elevação (MDE), para a estruturação de um framework automatizado, baseado em plataformas livres, com capacidade de monitorar níveis de inundações sobre essa área urbana, em escala espacial e temporal. Para a classificação do uso e cobertura da terra foram testados os classificadores por árvore de decisão Boosted C5.0, Random Forests e Classification and Regression Trees (CART). Primeiramente, foram identificadas as seguintes classes: vegetação arbórea; vegetação herbácea (gramíneas); solo exposto; sistema viário (calçamento); telhados metálicos e telhados cerâmicos claros; telhados de concreto e fibrocimento; telhados metálicos e cerâmicos escuros; e sombra. Por meio do programa eCognition foram aplicados sete níveis de segmentação do ortofotomosaico, coletadas as amostras e definidos os atributos para cada classe O treinamento para os classificadores foi realizado no programa R. Para a análise da exatidão de classificação, foram gerados pontos de checagem aleatórios, que foram comparados com as classes das três imagens classificadas, para o cálculo da matriz de erros e do índice Kappa. A imagem classificada pelo algoritmo Random Forests apresentou a maior Exatidão Global (EG = 82,20%) e Índice Kappa (K = 0,79), seguido pela imagem classificada pelo algoritmo Boosted C5.0 (EG = 80,4%; K = 0,77) e pelo CART (EG = 64,90%; K = 0,57). Já o framework foi baseado na equação de regressão fluviométrica Encantado/Lajeado. Os resultados dessa equação podem ser visualizados como mapas em uma interface WEBSIG, onde estão simuladas as áreas e infraestruturas inundadas no bairro centro de Lajeado. Foram projetados diferentes níveis históricos de inundações e esse modelo foi validado a partir da comparação dos dados simulados com os medidos de uma inundação ocorrida em 10 de outubro de 2015. O erro altimétrico obtido foi inferior a 1 m. O framework deste estudo realiza o monitoramento do nível de inundação para a área urbana de Lajeado com até 6 horas de antecedência, demonstrando a eficácia desta simulação. |