Ensemble Monte Carlo simulation of hole transport in Si, Ge and SiGe Alloys

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Soares, Caroline dos Santos
Orientador(a): Wirth, Gilson Inacio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/211276
Resumo: O comportamento elétrico de dispositivos microeletrônicos pode ser descrito pela análise do transporte dos portadores de carga. Nesse trabalho, um código Ensemble Monte Carlo foi adaptado para simular o transporte de lacunas em silício, germânio e em ligas SiGe. Nessas simulações, o movimento das lacunas foi modelado como períodos de caminho livre (free-flight) que são terminados por eventos de espalhamento. Essa técnica de simulação consiste em gerar randomicamente os tempos de caminho livre para cada lacuna e selecionar – baseado na energia da lacuna – o mecanismo de espalhamento que deve terminar o caminho livre. Para economizar tempo computacional, no início da simulação, as taxas de espalhamento de todos os processos considerados são armazenadas em uma tabela como função da energia da lacuna. O mecanismo de espalhamento é randomicamente selecionado comparando as taxas de espalhamento salvas na tabela com um número aleatório que é gerado depois do fim do caminho livre. Os espalhamentos incluídos na simulação de transporte de lacunas nesses semicondutores são causados por fônons acústicos e ópticos não polares. Para simular o transporte de lacunas nas ligas SiGe, além dos espalhamentos relacionados a interações com fônons, o espalhamento de ligas também foi incorporado no código. No simulador, a banda de valência desses semicondutores foi descrita usando a aproximação de três-bandas. A banda split-off foi considerada esférica e parabólica, enquanto as bandas light hole e heavy hole foram descritas como não-parabólicas e warped. Os parâmetros das funções de não-parabolicidade e warping foram obtidos ajustando as equações que descrevem cada efeito aos dados da estrutura de banda calculados por EPM. O simulador foi validado através da comparação dos resultados de simulação com os experimentais. A velocidade de deriva das lacunas em Si a 300K está de acordo com os resultados experimentais para um vasto intervalo de campo elétrico. A velocidade de deriva das lacunas em Ge a 220K concorda altamente com dados experimentais. A curva mobilidade versus concentração de Ge coincide com a curva experimental.