Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Bauer, Lidiane |
Orientador(a): |
Vigo, Álvaro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/11499
|
Resumo: |
Para estimar a correlação de duas variáveis que não têm distribuição conjunta normal bivariada, a alternativa mais usual é o coeficiente de correlação de Spearman. Entretanto, quando os dados necessitam de ponderação na análise, como no caso de delineamentos amostrais complexos, não existe método descrito na literatura para estimar essa correlação. Este artigo propõe dois métodos para este cenário e os compara via simulação Monte Carlo. O primeiro método, chamado de método da amostra expandida, consiste em replicar cada observação da amostra em número igual ao seu peso e calcular o coeficiente de Spearman na amostra expandida. No segundo método, o método dos postos, é estimado o coeficiente de correlação de Pearson ponderado nos postos das duas variáveis. Teste de hipóteses tradicional das estimativas produzidas pelos dois métodos também é abordado neste artigo. Os dois estimadores do coeficiente de Spearman ponderado explorados mostraram desempenhos muito semelhantes, com ausência de viés, pequena variabilidade e mesma eficiência. Entretanto, se recomenda estes métodos quando os dados são medidos em escala. Este trabalho também explora a estimação pontual do coeficiente de Pearson ponderado e estimação de intervalos de confiança bootstrap, quando a suposição de normalidade bivariada está violada. Sua principal vantagem é evitar potencial influência da expansão da amostra nos postos associados aos valores observados como ocorre com o coeficiente de Spearman. |