Estimação do coeficiente de correlação de spearman ponderado

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Bauer, Lidiane
Orientador(a): Vigo, Álvaro
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/11499
Resumo: Para estimar a correlação de duas variáveis que não têm distribuição conjunta normal bivariada, a alternativa mais usual é o coeficiente de correlação de Spearman. Entretanto, quando os dados necessitam de ponderação na análise, como no caso de delineamentos amostrais complexos, não existe método descrito na literatura para estimar essa correlação. Este artigo propõe dois métodos para este cenário e os compara via simulação Monte Carlo. O primeiro método, chamado de método da amostra expandida, consiste em replicar cada observação da amostra em número igual ao seu peso e calcular o coeficiente de Spearman na amostra expandida. No segundo método, o método dos postos, é estimado o coeficiente de correlação de Pearson ponderado nos postos das duas variáveis. Teste de hipóteses tradicional das estimativas produzidas pelos dois métodos também é abordado neste artigo. Os dois estimadores do coeficiente de Spearman ponderado explorados mostraram desempenhos muito semelhantes, com ausência de viés, pequena variabilidade e mesma eficiência. Entretanto, se recomenda estes métodos quando os dados são medidos em escala. Este trabalho também explora a estimação pontual do coeficiente de Pearson ponderado e estimação de intervalos de confiança bootstrap, quando a suposição de normalidade bivariada está violada. Sua principal vantagem é evitar potencial influência da expansão da amostra nos postos associados aos valores observados como ocorre com o coeficiente de Spearman.