Método ANN-MoC para problemas de transporte de partículas neutras em geometria 1D

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Tchantchalam, Augusto
Orientador(a): Konzen, Pedro Henrique de Almeida
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/276846
Resumo: O fenômeno de transporte de partículas neutras aparece em muitas importantes aplicações na engenharia e na medicina, tendo como grandes áreas as modelagens do transporte radiativo e o de neutrons. O modelo matemático fundamental baseia-se na equação linear de Boltzmann, uma equação integro-diferencial de primeira ordem. Nesse contexto, apresentamos o método ANN-MoC como operador integral no procedimento de resolver problemas de transporte de partículas neutras em geometria unidimensional (1D). O novo método consiste no acoplamento de uma rede neural artificial (ANN, do inglês, artificial neural network ) com o método das características (MoC, do inglês, method of characteristics). Este fornece uma forma explícita da solução, mas que dependente de estimativas do fluxo escalar de partículas. Seguindo um esquema de iteração de fonte, uma rede neural artificial (ANN) é treinada para fornecer estimativas deste fluxo em qualquer ponto do domínio computacional. Trata-se de uma alternativa à aplicação de técnicas clássicas de interpolação e aproximação de funções. O ANN-MoC é um método conceitual que busca usufruir da flexibilidade, adaptabilidade e boas propriedades de aproximação de funções por ANNs. A apresentação desse novo método é acompanhada de uma série de estudos de casos que buscam analisar suas vantagens e desvantagens. Comparações com soluções manufaturadas e com as clássicas variantes Linear-MoC (interpolação linear) e Quadrática-MoC (interpolação quadrática) são apresentadas e discutidas para três problemas de transporte de partículas neutras em geometria 1D. Em geral, o treinamento (calibração) e a própria aplicação (cálculo) de uma ANN é computacionalmente mais custosa do que a de polinômios lineares ou quadráticos. Isso implica que o método ANNMoC tenha um custo computacional maior que suas variantes clássicas. O ANN-MoC apresentou resultados com boa precisão gráfica para todos os problemas estudados, embora pareça ser menos preciso que as variantes comparadas. Mesmo que o método proposto possa ser computacionalmente mais custoso ou menos preciso que suas variantes clássicas, ele abre um novo paradigma no que oferece maior flexibilidade e adaptabilidade. Principalmente, o método ANN-MoC permite o acoplamento no treinamento das ANNs de dados (fornecidos a priori ou in loco), o que pode ser futuramente explorado na resolução de problemas diretos e inversos de transporte de partículas neutras.