Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Froelich, Deise Beatriz |
Orientador(a): |
Muniz, André Rodrigues |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/179559
|
Resumo: |
Carbon-dots (C-dots, pontos de carbono) ou Carbon Quantum Dots (CQDs, pontos quânticos de carbono) consistem em uma interessante classe de nanopartículas de carbono, que vêm recebendo grande atenção devido à sua combinação de propriedades como luminescência, excelente biocompatibilidade e dispersabilidade em água. C-dots são nanopartículas quase esféricas, formados por fragmentos de grafeno empilhados, com diâmetros entre 1 à 10 nm, contendo grupos funcionais na superfície. Embora exista um significativo número de estudos experimentais na literatura, ainda há uma ampla discussão sobre os detalhes estruturais destas nanopartículas e seus efeitos nas propriedades óticas apresentadas. Neste trabalho, utilizamos simulações de dinâmica molecular para explorar detalhes da estrutura atômica dos C-dots, propondo estruturas que apresentem características estruturais, morfológicas e de composição conforme observados em experimentos. Para tanto, criamos inicialmente modelos dessas nanopartículas baseados no empilhamento de fragmentos de grafeno funcionalizados nas bordas. Observou-se que após a relaxação estrutural, os fragmentos foram reorientados, levando a um alinhamento turbostrático entre camadas, com espaçamento próximo aos característicos do grafite Em seguida, calculamos a energia de adesão das camadas dos C-dots, para avaliar a estabilidade desses aglomerados, e os resultados mostram que a presença de grupos funcionais oxigenados contribui para uma melhor adesão entre as camadas. Ainda, criamos modelos semelhantes para essas nanopartículas, incluindo átomos próximos as bordas dos nanoflakes utilizando um método hibrido de MC/MD e os resultados mostram reconstrução da superfície devido a formação espontânea de ligações covalentes nas bordas com a presença de pentágonos, hexágonos e defeitos. Usamos também simulações de dinâmica molecular reativa para analisar a formação destas partículas, partindo de fragmentos resultantes da quebra de moléculas orgânicas, conforme observado experimentalmente. Estas simulações mostraram que a estrutura dos C-dots pode ser um pouco mais complexa do que as atualmente propostas, contendo outros tipos de interação entre os nanoflakes de grafeno, que podem afetar significativamente as propriedades do material. |