Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Korzenowski, Andre Luis |
Orientador(a): |
Werner, Liane |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/17143
|
Resumo: |
O presente trabalho propõe um framework que inclui a organização de procedimentos e técnicas estatísticas para a verificação da premissa e suposições dos gráficos de controle. Ao final do framework o usuário tem a indicação de qual gráfico é mais propício a condição dos dados em relação as suposições verificadas. O método é dividido em 4 fases que engloba a verificação da premissa de estacionariedade e das suposições de normalidade, independência e homocedasticidade. Procedimentos com o objetivo de adequar os dados as suposições são apresentados. Esta dissertação apresenta sugestões para solução dos problemas relacionados a violação da suposição de homocedasticidade. Descreve os principais modelos de obtenção de resíduos independentes e normal e identicamente distribuídos como solução para a violação de independência. São efetuados dois estudos de simulação Monte Carlo onde, como principais resultados, obteve-se: (i) um procedimento eficiente para verificação da premissa de que o processo encontra-se sob controle antes da implantação dos gráficos de controle e; (ii) o efeito da não normalidade na probabilidade de erros do tipo I nos gráficos X e S de Shewhart. Além disso, apresenta a relação entre tamanho de amostra e não normalidade como aspecto importante na construção de gráficos de controle do tipo X e S de Shewhart em relação ao erro do tipo I. |