Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Lucas, Cícero de Melo |
Orientador(a): |
Fogliatto, Flavio Sanson |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/10603
|
Resumo: |
A presente dissertação aborda a otimização de processos industriais através da utilização de projeto de experimentos. Em experimentos planejados, variáveis de respostas são usualmente consideradas como normalmente distribuídas. No entanto, em algumas situações, tal suposição é violada; por exemplo, quando respostas expressam contagens, podendo assumir somente valores inteiros e não-negativos. Nesses casos, é mais provável que as respostas sigam uma distribuição de Poisson e, em sua modelagem, deve-se utilizar os modelos lineares generalizados (MLG), adequados para respostas da chamada família exponencial, à qual pertence a distribuição de Poisson. Se ainda persiste a dúvida quanto ao comportamento das respostas, o modelo de quase-verossimilhança também é uma alternativa possível. Esta dissertação apresenta a reanálise de um experimento, apresentado em Arriba (2005), onde algumas respostas são categóricas. Na análise original do experimento, respostas categóricas foram modeladas através de regressão dos mínimos quadrados ordinários, desconsiderando a violação do pressuposto de normalidade das respostas. Na reanálise aqui apresentada, as variáveis são corretamente abordadas usando-se os modelos lineares generalizados. Como o objetivo do trabalho de Arriba (2005) era a otimização de um processo descrito por múltiplas respostas, comparam-se os resultados da otimização mediante as duas estratégias de modelagem das respostas, além de se propor um método alternativo, mais simplificado, de otimização experimental. |