Mineração de textos aplicada na previsão e detecção de eventos adversos no Hospital de Clínicas de Porto Alegre

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva, Daniel Antonio da
Orientador(a): Ten Caten, Carla Schwengber
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/163453
Resumo: Este trabalho apresenta os resultados de uma pesquisa que teve como objetivo avaliar o desempenho de métodos de mineração de textos na previsão e detecção de Eventos Adversos (EA). A primeira etapa foi a revisão sistemática da literatura que buscou identificar os métodos de mineração de textos e as áreas da saúde que esses estão sendo aplicados para prever e detectar EA. Após essa etapa foi realizada uma aplicação de métodos de mineração de textos para prever Infecções do Sítio Cirúrgico (ISC) a partir do texto livre de descrições cirúrgicas no Hospital de Clínicas de Porto Alegre (HCPA). Por fim, métodos de mineração de textos foram aplicados para detectar ISC a partir do texto das evoluções de pacientes 30 (trinta) dias após uma cirurgia. Como resultados, destaca-se a identificação dos melhores métodos de pré-processamento e mineração de textos para prever e detectar ISC no HCPA, podendo ser aplicados a outros EA. O método Stochastic Gradient Descent (SGD) apresentou o melhor desempenho, 79,7% de ROC-AUC na previsão de EA. Já para detecção de EA o melhor método foi o Logistic Regression, com desempenho 80,6% de ROC-AUC. Os métodos de mineração de textos podem ser usados para apoiar de maneira eficaz a previsão e detecção de EA, direcionando ações de vigilância para a melhoria da segurança do paciente.