Odin : online, non-intrusive and self-tuning DCT and DVFS to optimize openMP applications

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Oliveira, Charles Cardoso de
Orientador(a): Beck Filho, Antonio Carlos Schneider
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/212545
Resumo: Aplicações modernas têm levado o processamento paralelo a outro nível de requisitos em desempenho e energia. Entretanto, na maioria dos casos, usar o número máximo de núcleos disponíveis executando na maior frequência possível não oferecerá o melhor Energy-Delay Product (EDP), pois existem vários aspectos que impedem melhorias lineares ao explorá-los. Além disso, as várias regiões paralelas que compõem uma aplicação podem variar em comportamento dependendo de características que podem ser conhecidas apenas em tempo de execução: conjunto de entradas, microarquitetura e número de núcleos disponíveis. Para resolver esse problema, propomos Odin: uma abordagem de autoajuste online e leve que otimiza as aplicações OpenMP para EDP. Enquanto sua natureza dinâmica torna-o capaz de adaptar-se em um ambiente variante, ele também é totalmente transparente para ambos desenvolvedor e usuário final. Portanto, Odin não necessita de nenhuma modificação em código-fonte ou binário, logo potencialmente qualquer arquivo executável OpenMP que seja ligado dinamicamente pode ser otimizado sem nenhum esforço. Ao implementar diferentes estratégias online, nós mostramos que Odin pode de forma transparente melhorar o EDP, em média, em 37.6% quando comparado ao método regular de execução OpenMP com o DVFS configurado para ondemand. Adicionalmente, nós implementamos uma abordagem alternativa offline que usa um algoritmo genético para otimizar as aplicações paralelas, mostrando que Odin pode alcançar resultados similares a ela. Finalmente, nós avaliamos o custo de aprendizado e qualidade da solução de Odin comparando-o com uma busca local exaustiva, que é a configuração ótima para cada região paralela.