Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Gastal, Eduardo Simões Lopes |
Orientador(a): |
Oliveira Neto, Manuel Menezes de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/118258
|
Resumo: |
Filtragem é uma das mais importantes operações em processamento de imagens e vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para diversas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da área. Infelizmente, implementações ingênuas desta importante classe de filtros são demasiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos em sinais amostrados não-uniformemente. A domain transform, representa o estado-da-arte em termos de algoritmos para filtragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um procedimento simples de redução de dimensionalidade para implementar eficientemente filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com preservação de arestas em tempo real para vídeos coloridos de alta resolução (full HD). Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdividir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais são filtradas independentemente e finalmente interpoladas para obter uma filtragem de alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando. Finalmente, introduzimos uma formulação matemática que descreve a aplicação de um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação estende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respostas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geodésicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite uma nova variedade de efeitos para aplicações em imagens e vídeos. |