Estudo e aplicação de diferentes métodos para redução de falsos alarmes no monitoramento de frequência cardíaca

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Borges, Gabriel de Morais
Orientador(a): Brusamarello, Valner Joao
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/141939
Resumo: O monitoramento automático de pacientes é um recurso essencial em hospitais para o bom gerenciamento de cuidados médicos. Enquanto que alarmes devido a condições fisiológicas anormais são importantes para o rápido tratamento, estes também podem ser uma fonte de ruídos desnecessários devido a falsos alarmes causados por interferência eletromagnética ou movimentação de sensores. Uma fonte significativa de falsos alarmes é relacionada com a frequência cardíaca, o qual é disparado quando o ritmo cardíaco do paciente está muito rápido ou muito lento. Neste trabalho, a fusão de diferentes sensores fisiológicos é explorada para fazer uma estimativa robusta de frequência cardíaca. Um conjunto de algoritmos utilizando índice de variabilidade cardíaca, inferência bayesiana, redes neurais, lógica fuzzy e votador majoritário são propostos para fundir a informação do eletrocardiograma, pressão sanguínea e fotopletismograma. Três informações básicas são extraídas de cada sensor: variabilidade cardíaca, a diferença de frequência cardíaca entre os sensores e a análise espectral. Estas informações são usadas como entradas para os algoritmos. Quarenta gravações selecionadas do banco de dados MIMIC são usadas para validar o sistema. Finalmente, a frequência cardíaca calculada é comparada com as anotações do banco de dados. Resultados mostram que a fusão utilizando redes neurais apresenta a melhor redução de falsos alarmes de 89.33%, enquanto que a técnica bayesiana apresenta uma redução de 83.76%. A lógica fuzzy mostrou uma redução de 77.96%, o votador majoritário 61.25% e o índice de variabilidade cardíaca de 65.43%. Portanto, os algoritmos propostos mostraram bom desempenho e podem ser muito úteis em monitores de sinais vitais modernos.