Propriedades estatísticas do método da análise de flutuações destendenciadas em seqüências de DNA

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Linhares, Raquel Romes
Orientador(a): Lopes, Silvia Regina Costa
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/60535
Resumo: Conforme diversos artigos, as sequênncias de DNA apresentam longa dependência, isto é, mesmo para tempos bastante distantes entre si, a correlação entre as variáveis aleatórias é não desprezível. Neste trabalho, verificamos se esta longa dependência pode ser explicada pelos processos auto-regressivos médias móveis fracionariamente integráveis (ARFIMA(p; d; q)), através da análise de diversas sequências de DNA em todos os domínios da vida. Para estimar o parâmetro de diferenciação d utilizamos os seguintes métodos de estimação: semiparamétrico baseado na equação de regressão linear utilizando a função periodograma, em versão clássica e robusta; o da máxima verossimilhança (ver Fox e Taqqu, 1986), utilizando a aproximação sugerida por Whittle (1953) e o método semiparamétrico R/S(n), proposto por Hurst (1951). O objetivo principal deste trabalho é analisar o método da análise de flutuações destendenciadas ("Detrended Fluctuation Analysis" - DFA), pro- posto por Peng et al. (1994). Este método é estabelecido como uma importante ferramenta para detectar longa dependência em séries temporais não estacionárias. Descrevemos o método DFA e analisamos sua consistência e distribuição assintótica como um estimador para o parâmetro fracionário d.