Performance optimization of geophysics stencils on HPC architectures

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Abaunza, Víctor Eduardo Martínez
Orientador(a): Navaux, Philippe Olivier Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
HPC
Link de acesso: http://hdl.handle.net/10183/183165
Resumo: A simulação de propagação de onda é uma ferramenta crucial na pesquisa de geofísica (para análise eficiente dos terremotos, mitigação de riscos e a exploração de petróleo e gáz). Devido à sua simplicidade e sua eficiência numérica, o método de diferenças finitas é uma das técnicas implementadas para resolver as equações da propagação das ondas. Estas aplicações são conhecidas como estênceis porque consistem num padrão que replica a mesma computação num domínio multidimensional de dados. A Computação de Alto Desempenho é requerida para solucionar este tipo de problemas, como consequência do grande número de pontos envolvidos nas simulações tridimensionais do subsolo. A optimização do desempenho dos estênceis é um desafio e depende do arquitetura usada. Neste contexto, focamos nosso trabalho em duas partes. Primeiro, desenvolvemos nossa pesquisa nas arquiteturas multicore; analisamos a implementação padrão em OpenMP dos modelos numéricos da transferência de calor (um estêncil Jacobi de 7 pontos), e o aplicativo Ondes3D (um simulador sísmico desenvolvido pela Bureau de Recherches Géologiques et Minières); usamos dois algoritmos conhecidos (nativo, e bloqueio espacial) para encontrar correlações entre os parâmetros da configuração de entrada, na execução, e o desempenho computacional; depois, propusemos um modelo baseado no Aprendizado de Máquina para avaliar, predizer e melhorar o desempenho dos modelos estênceis na arquitetura usada; também usamos um modelo de propagação da onda acústica fornecido pela empresa Petrobras; e predizemos o desempenho com uma alta precisão (até 99%) nas arquiteturas multicore. Segundo, orientamos nossa pesquisa nas arquiteturas heterogêneas, analisamos uma implementação padrão do modelo de propagação de ondas em CUDA, para encontrar os fatores que afetam o desempenho quando o número de aceleradores é aumentado; então, propusemos uma implementação baseada em tarefas para amelhorar o desempenho, de acordo com um conjunto de configuração no tempo de execução (algoritmo de escalonamento, tamanho e número de tarefas), e comparamos o desempenho obtido com as versões de só CPU ou só GPU e o impacto no desempenho das arquiteturas heterogêneas; nossos resultados demostram um speedup significativo (até 25) em comparação com a melhor implementação disponível para arquiteturas multicore.