Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Karling, Maicon Josué |
Orientador(a): |
Lopes, Silvia Regina Costa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/231697
|
Resumo: |
Neste trabalho estudamos princípios de grandes desvios aplicados à estimação do parâmetro de um processo autorregressivo Gaussiano de primeira ordem. Levamos em consideração o estimador de Yule-Walker e o estimador de mínimos quadrados do parâmetro deste processo. O método utilizado para obter à função taxa, consiste na decomposição dos estimadores em uma combinação linear entre variáveis aleatórias independentes e identicamente distribuídas, com distribuição χ 2 1 . Os coeficientes dessa combinação linear são os autovalores do produto de duas matrizes de Toeplitz. Também estudamos o processo autorregressivo de primeira ordem com inovações advindas de um processo α-estável não-Gaussiano. Mostramos que tal processo é estacionário, mixing e ergódico. Além disso, provamos que a matriz de codiferença deste processo pode ser representada através de uma matriz de Toeplitz |