Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Jorge, Vitor Augusto Machado |
Orientador(a): |
Silva Junior, Edson Prestes e |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/159543
|
Resumo: |
Algoritmos de detecção de linhas são usados em muitos campos de aplicação, tais como visão computacional e automação como base para análises mais complexas. Por exemplo, a informação de linha pode ser usada como dado de entrada para algoritmos de detecção de objetos ou mesmo para a estimativa da orientação espacial de robôs aéreos. Uma das formas de detectar linhas é através do uso de um processo de filtragem não linear chamado deWide Line Detector (WLD). Esse algoritmo é eficaz na marcação de pixels de linha em imagens em tons de cinza, separando linhas claras ou linhas escuras. Contudo, os algoritmos de detecção de linha não estão normalmente preocupados com a estimativa de largura local individual associada a um pixel. Se disponível, tal informação poderia ser explorada por algoritmos de visão computacional. Além do mais, a informação de cor também é extensivamente usada em visão computacional como um discriminante de objetos, mas o WLD não a usa. Neste Trabalho, nós propusemos a extensão do WLD para imagens em cores. Nós também desenvolvemos um novo kernel monotonicamente crescente que é mais eficiente e mais robusto para detectar linhas do que que os kernels monotonicamente decrescentes usados pelo WLD. Por fim, desenvolvemos uma maneira de obter uma estimativa de largura de linha partindo da densidade local associada a similaridade entre pixels, revertendo o processo usado pelo WLD para estimar qual kernel deve ser usado. Diversos experimentos foram realizados com o método proposto considerando diferentes parâmetros, além da comparação com o WLD tradicional, para analizar a eficácia do método. |