Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Padoin, Edson Luiz |
Orientador(a): |
Navaux, Philippe Olivier Alexandre |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/140401
|
Resumo: |
Os atuais sistemas de HPC tem realizado simulações mais complexas possíveis, produzindo benefícios para diversas áreas de pesquisa. Para atender à crescente demanda de processamento dessas simulações, novos equipamentos estão sendo projetados, visando à escala exaflops. Um grande desafio para a construção destes sistemas é a potência que eles vão demandar, onde perspectivas atuais alcançam GigaWatts. Para resolver este problema, esta tese apresenta uma abordagem para aumentar a eficiência energética usando recursos de HPC, objetivando reduzir os efeitos do desequilíbrio de carga e economizar energia. Nós desenvolvemos uma estratégia baseada no consumo de energia, chamada ENERGYLB, que considera características da plataforma, irregularidade e dinamicidade de carga das aplicações para melhorar a eficiência energética. Nossa estratégia leva em conta carga computacional atual e a frequência de clock dos cores, para decidir entre chamar uma estratégia de balanceamento de carga que reduz o desequilíbrio de carga migrando tarefas, ou usar técnicas de DVFS par ajustar as frequências de clock dos cores de acordo com suas cargas computacionais ponderadas. Como as diferentes arquiteturas de processador podem apresentam dois níveis de granularidade de DVFS, DVFS-por-chip ou DVFS-por-core, nós criamos dois diferentes algoritmos para a nossa estratégia. O primeiro, FG-ENERGYLB, permite um controle fino da frequência dos cores em sistemas que possuem algumas dezenas de cores e implementam DVFS-por-core. Por outro lado, CG-ENERGYLB é adequado para plataformas de HPC composto de vários processadores multicore que não permitem tal refinado controle, ou seja, que só executam DVFS-por-chip. Ambas as abordagens exploram desbalanceamentos residuais em aplicações interativas e combinam balanceamento de carga dinâmico com técnicas de DVFS. Assim, eles reduzem a frequência de clock dos cores com menor carga computacional os quais apresentam algum desequilíbrio residual mesmo após as tarefas serem remapeadas. Nós avaliamos a aplicabilidade das nossas abordagens utilizando o ambiente de programação paralela CHARM++ sobre benchmarks e aplicações reais. Resultados experimentais presentaram melhorias no consumo de energia e na demanda potência sobre algoritmos do estado-da-arte. A economia de energia com ENERGYLB usado sozinho foi de até 25% com nosso algoritmo FG-ENERGYLB, e de até 27% com nosso algoritmo CG-ENERGYLB. No entanto, os desequilíbrios residuais ainda estavam presentes após as serem tarefas remapeadas. Neste caso, quando as nossas abordagens foram empregadas em conjunto com outros balanceadores de carga, uma melhoria na economia de energia de até 56% é obtida com FG-ENERGYLB e de até 36% com CG-ENERGYLB. Estas economias foram obtidas através da exploração do desbalanceamento residual em aplicações interativas. Combinando balanceamento de carga dinâmico com DVFS nossa estratégia é capaz de reduzir a demanda de potência média dos sistemas paralelos, reduzir a migração de tarefas entre os recursos disponíveis, e manter o custo de balanceamento de carga baixo. |