Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Silva, Keslley Lima da |
Orientador(a): |
Cota, Erika Fernandes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/231868
|
Resumo: |
Os critérios de cobertura de teste auxiliam o testador na análise da qualidade do conjunto de testes, em especial em sistemas em evolução onde pode ser utilizado para orientar a priorização dos testes de regressão e o esforço de teste de um novo código. No entanto, a análise da cobertura de critérios mais poderosos, tais como a cobertura de caminhos, continua a ser desafiante devido à falta de ferramentas de apoio. Como consequência, o testador avalia a qualidade de um conjunto de testes utilizando critérios de cobertura mais básicos (por exemplo, cobertura de nós e cobertura de arcos), que são os que são suporta dos por ferramentas. Neste trabalho, avaliou-se a oportunidade de utilizar algoritmos de aprendizagem de máquina para estimar a cobertura de caminhos primos de um conjunto de testes em nível de método. Seguiu-se o processo de descoberta de conhecimento em base de dados e um conjunto de dados construído a partir de 9 projetos do mundo real para se criarem três modelos de regressão para a previsão do valor de cobertura do critério de caminhos primos a partir de métricas de código. Compararam-se quatro algoritmos dife rentes de aprendizagem de máquina e realizou-se uma análise detalhada de características para identificar aquelas que mais afetam o desempenho da predição. Os resultados experi mentais mostraram que modelos preditivos de boa acurácia podem ser gerados a partir de um conjunto de métricas de código pequeno e de fácil obtenção. O melhor modelo gerado utiliza como dados de entrada apenas cinco métricas de código fonte e uma métrica básica de cobertura de teste e atinge um MAE de 0,016 (1,6%) na validação cruzada (validação interna) e um MAE de 0,06 (6%) na validação externa. Por fim, observou-se que modelos preditivos adequados podem ser gerados a partir de métricas de código comuns, embora o uso da métrica de cobertura de arcos, quando disponível, possa melhorar ainda mais o desempenho de predição. |