mFFORMS : multi-level Feature-based FORecast Model Selection

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Bermúdez, Bruno Grillo de
Orientador(a): Ziegelmann, Flavio Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/266237
Resumo: Montero-Manso et al. [2020] propôs um método de combinação de meta-aprendizagem, denominado FFORMA, que fornece pesos para cada método de previsão candidato, dado as características da série temporal. Esse método obteve o segundo lugar geral na competição M4, concurso que contou com edição especial no International Journal of Forecasting. A relevância da competição M4 advém do grande número de séries temporais (100.000) com características variadas que são encontradas por pesquisadores e profissionais em seus desafios. Inspirados por desenvolvimentos recentes na literatura de combinação de previsão, propômos o mFFORMS, um meta-learner que seleciona um método de combinação de previsão de modelos de séries temporais com base em características de séries temporais. Esta abordagem consiste em duas fases. Na primeira, usamos uma coleção de séries temporais para treinar um meta-learner que seleciona o método de combinação de previsão que minimiza uma medida de erro. Cada método de combinação usa dados de validação cruzada para estimar os pesos de cada modelo de previsão presentes no pool de candidatos. As entradas para o meta-learner são as características da série temporal e a resposta é o rótulo do método de combinação que produz o menor erro esperado. Na segunda fase, usamos o meta-learner previamente treinado para selecionar o método de combinação dado às características da série temporal. Em seguida, empregamos o método de combinação selecionado para atribuir pesos às previsões produzidas pelos métodos de previsão. Em nossa comparação, consideramos o mesmo conjunto de modelos de previsão e as mesmas informações disponíveis ao longo da competição. Nas configurações M4, nossa abordagem fornece melhores resultados do que os métodos de combinação candidatos; no entanto, tem desempenho inferior ao FFORMA e é mais intensivo computacionalmente.