Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Ferrari, Guilherme Gonçalves |
Orientador(a): |
Dottori, Horacio Alberto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/127985
|
Resumo: |
Mapas simpléticos são bem conhecidos por preservarem o volume do espaço de fase em dinâmica Hamiltoniana e são particularmente apropriados para problemas que requerem longos tempos de integração. Nesta tese nós desenvolvemos abordagens baseadas em mapas simpléticos para o acoplamento de multi sub-sistemas/domínios astrofísicos/códigos de simulação, para integração eficiente de sistemas de N-corpos auto-gravitantes com grandes variações nas escalas de tempo características. Nós estabelecemos uma família de 48 novos mapas simpléticos baseados numa separação Hamiltoniana recursiva, que permite que o acoplamento ocorra de uma maneira hierárquica, contemplando assim todas as escalas de tempo das interações envolvidas. Nossa formulação é geral o suficiente para permitir que tal método seja utilizado como receita para combinar diferentes fenômenos físicos, que podem ser modelados independentemente por códigos especializados. Nós introduzimos também uma separação Hamiltoniana baseada em Hamiltonianos de Kepler, para resolver o problema gravitacional geral de N-corpos como uma composição de N2 problemas de 2-corpos. O método resultante é exato para cada problema de 2-corpos individual e produz resultados rápidos e precisos para sistemas de N-corpos quase- Keplerianos, como sistemas planetários ou um aglomerado de estrelas que orbita um buraco-negro supermassivo. O método é também apropriado para integração de sistemas de N-corpos com hierarquias intrínsecas, como um aglomerados de estrelas com binárias compactas. Nós apresentamos a implementação dos algoritmos mencionados e descrevemos o nosso código tupan, que está publicamente disponível na seguinte url: https://github.com/ggf84/tupan. |