Otimização de estruturas de materiais compósitos laminados, baseada em confiabilidade, utilizando algoritmos genéticos e redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Lopes, Paulo André Menezes
Orientador(a): Awruch, Armando Miguel
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/18416
Resumo: A resistência e a rigidez de materiais compósitos variam consideravelmente devido a mudanças no tipo de material, espessura das camadas, ângulo de orientação das fibras e seqüência das lâminas. O projeto de uma estrutura ótima pode ser obtido dada uma determinada condição de carga. Vários métodos de otimização determinísticos foram desenvolvidos para tratar esse problema. Algumas vezes a orientação ótima das fibras muda quando as condições de carga variam e o desempenho da estrutura é altamente afetado pelas variáveis de projeto e condições de carregamento. Dessa forma, a otimização deste tipo de estrutura utilizando a confiabilidade como restrição é um importante problema a ser tratado. Este trabalho trata do problema da otimização de estruturas de materiais compósitos laminados com restrição de confiabilidade utilizando algoritmos genéticos e redes neurais. A análise da estrutura é feita via elementos finitos e as tensões na direção dos eixos principais de cada lâmina são utilizadas para o cálculo do índice de confiabilidade da estrutura, sendo a função de estado limite o critério de Tsai-Wu para falha de materiais compósitos laminados. A análise de confiabilidade é feita através de um dos seguintes métodos: FORM com um ponto de linearização, FORM para sistemas em série, Monte Carlo Direto e Monte Carlo com Amostragem por Importância. O processo de otimização via Algoritmos Genéticos (com suas fases de geração, seleção e cruzamento dos indivíduos da população), é usado em conjunto com os métodos de determinação do índice de confiabilidade e análises por elementos finitos. Isto gera um alto custo computacional, o qual é contornado utilizando-se Redes Neurais do tipo Perceptron e Base Radial, treinadas para substituir a análise via elementos finitos, diminuindo consideravelmente o tempo de processamento. É mostrado por meio de diversos exemplos que esta metodologia pode ser usada sem perda de precisão e com economia de tempo de processamento até mesmo em exemplos fortemente não lineares.