Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Cestari, Jardel Caminha Carvalho |
Orientador(a): |
Gusmao, Miguel Angelo Cavalheiro |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/134174
|
Resumo: |
Investigamos transições de fase quânticas em condensados de Bose-Einstein unidimensionais em rede, descritos pelo modelo de Bose-Hubbard e generalizações. Nosso foco principal é na transição de localização induzida tanto por desordem aleatória (modelo de Anderson) quanto por potenciais incomensuráveis (modelo de Aubry-André). Por meio de diagonalização exata do Hamiltoniano, calculamos fração de superfluído (parâmetro apropriado para sinalizar localização), emaranhamento, gap de energia, compressibilidade, e fidelidade do estado fundamental. Complementando-se mutuamente, essas quantidades dão claras indicações da ocorrência de transições de fases quânticas, mesmo em redes pequenas. Analisamos em detalhe efeitos de tamanho finito, obtendo expoentes críticos para a transição de localização de Anderson, tanto no limite não interagente quanto com interação fraca. Também estudamos a transição entre as fases isolante de Mott e vidro de Bose para interação forte, que pode ser tratada com um limite de baixa mobilidade (pequena amplitude de hopping). Adicionalmente, estudamos propriedades topológicas de um modelo de Aubry-André unidimensional generalizado, e sua inter-relação com a “desordem”, com especial atenção para a estabilidade de certos estados topológicos frente a uma perturbação periódica incomensurável. |