Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Antunez, Kauã Minho |
Orientador(a): |
Bazanella, Alexandre Sanfelici |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/234974
|
Resumo: |
Este trabalho propõe uma nova extensão para a formulação não linear do método de controle orientado por dados conhecido como Método da Referência Virtual Não Linear, ou Nonlinear Virtual Reference Feedback Tuning – denominado aqui somente como VRFT. Quando o processo a ser controlado contém uma quantidade significativa de ruído, a abordagem padrão do VRFT – que usa o método dos Mínimos Quadrados – fornece estimativas com propriedades estatísticas pobres. Essas propriedades podem levar o sistema de controle a desempenhos indesejáveis em malha fechada. Com a intenção de melhorar essas propriedades estatística, identificar um controlador simples em quantidade de parâmetros e melhorar o desempenho em malha fechada do sistema, este trabalho propõe o uso da regularização ℓ1 na formulação não linear do método VRFT. A regularização é uma técnica que tem sido amplamente empregada e pesquisada nas comunidades de Aprendizagem de Máquina e Identificação de Sistemas ultimamente. Além disso, esta técnica é apropriada para reduzir a variância das estimativas. Uma análise detalhada do efeito do ruído na estimativa é feita para o método VRFT não linear. Finalmente, três diferentes métodos de regularização, o terceiro proposto neste trabalho, são comparados com o VRFT. |