Diferenciabilidade em todo ponto de soluções de viscosidade do ∞-laplaciano

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Rickes, André
Orientador(a): Farias, Diego Marcon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/280421
Resumo: Nesta dissertação, provamos o resultado de regularidade que afirma que soluções de viscosidade da equação homogênea −∆∞u = 0 em um domínio Ω ⊂ R n são diferenciáveis em todo ponto de Ω, onde ∆∞ é o operador ∞-laplaciano, uma extensão natural do operador p-laplaciano e definido por ∆∞u = Xn i,j=1 uxiuxjuxixj = D ∇2u∇u, ∇u E . Para isso, definimos as soluções de viscosidade de −∆∞u = 0 e apresentamos as equivalências entre uma função ser ∞-harmônica, satisfazer comparação com cones e ser solução do problema de extensão de Lipschitz em Ω, além de propriedades dessas funções. Ademais, é feita uma análise dos blow-ups de funções ∞-harmônicas, onde é mostrado que esses são lineares e que todos os blow-ups em um mesmo ponto são iguais, implicando no resultado de regularidade desejado. Utilizamos como referência diversos materiais que estabelecem resultados de existência, unicidade e regularidade para funções ∞-harmônicas, os quais utilizam propriedades previamente estabelecidas em outros artigos e são devidamente citados ao longo do texto. Referenciamos também os artigos precursores no estudo do ∞-laplaciano e elaboramos essa dissertação de modo que contenha o enunciado e prova de todos os resultados utilizados relativos a funções ∞-harmônicas.