Análise orientada a objetos para a classificação de uso e cobertura da terra com imagens de Vant e de nanossatélites

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Barbosa, Bruno José Bonho Link
Orientador(a): Mendes Junior, Cláudio Wilson
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/233793
Resumo: O advento de plataformas como os Veículos Aéreos Não Tripulados (VANT), juntamente com o surgimento de novas técnicas fotogramétricas, como o algoritmo Structure From Motion, tem possibilitado a melhora do mapeamento em ambientes urbanos e rurais. As imagens de VANT permitem uma análise detalhada da superfície terrestre para a produção de informações cartográficas, em sua maioria, por meio da interpretação visual e extração manual de informações. Porém, devido à baixa resolução espectral das imagens obtidas pelos VANT mais difundidos no mercado, o uso de técnicas de classificação automática não é uma prática corriqueira. O presente trabalho explora o uso combinado de fotografias obtidas por VANT e de imagens multiespectrais de nanossatélites para a classificação do uso e cobertura da terra de área rural por meio da abordagem GEOBIA. Para tanto, foram realizadas: (i) aquisição e processamento de imagens de VANT e de nanossatélites; (ii) fusionamento por transformação IHS para aumentar a resolução espacial da imagem do Infravermelho Próximo (NIR) dos nanossatélites (iii); segmentação das imagens; (iv) definição de seis conjuntos de dados para a avaliação da contribuição de seus atributos na acurácia da classificação; (v) classificação dos seis conjuntos de dados empregando os classificadores por árvore de decisão (AD) Random Forest (RF) e Boosted C5.0; e (vi) avaliação da acurácia das classificações geradas. O melhor resultado encontrado foi obtido pelo RF, atingindo valores de exatidão global de 0,867 e de índice Kappa de 0,854 na classificação feita a partir do uso de todos os conjuntos de dados nesse algoritmo. Os atributos gerados a partir dos dados de NIR, oriundos das imagens orbitais, não contribuíram para o aumento na exatidão da classificação. Por outro lado, os atributos derivados do Modelo Digital de Superfície (MDS) foram os mais importantes para melhorar a qualidade da classificação do ortofotomosaico. Os resultados mostraram que fotografias obtidas com câmeras de baixo custo acopladas a VANT e que o MDS derivado dessas imagens podem ser usados para gerar mapas precisos de cobertura e uso da terra de áreas rurais, a partir do emprego de classificadores baseados na abordagem GEOBIA e no classificador Random Forest.