Uso de redes recorrentes para identificação automática de contaminantes e para a estimação de um sensor virtual de eletromiografia no contexto de um sistema tolerante a falhas

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Machado, Juliano Costa
Orientador(a): Balbinot, Alexandre
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/234964
Resumo: O desenvolvimento de sistemas inteligentes controlados por eletromiografia que possam se adaptar a possíveis contaminações extrínsecas e intrínsecas, que afetem a taxa de acerto do classificador de movimentos, leva a dispositivos mais robustos e seguros, vistos que evitariam acionamentos indevidos e inesperados. Esse trabalho apresenta uma solução para contaminações por Artefato de Movimento, Ruído de Linha Elétrica, Ruído Branco Aditivo e ECG em 9 diferentes níveis de SNR, de -40dB a 40dB, utilizando Redes Neurais Recorrentes (RNR) com unidades LSTM nas duas etapas deste trabalho. A primeira etapa é o sistema de identificação da contaminação, que traz como inovação a identificação do contaminante diretamente do sinal bruto de sEMG, deixando para a rede a extração das características temporais, onde os resultados apontaram uma taxa de mais de 90% de acerto do tipo de contaminante para SNR = -30dB. A segunda etapa é a geração de um Sensor Virtual a partir de 7 estudos de caso em falhas de eletrodos, que traz como inovação a regressão do sinal retificado e suavizado por um filtro AVT. A geração do sensor virtual é realizada a partir dos canais não contaminados também utilizando uma RNR - LSTM com o objetivo de recuperar a taxa de acerto em 18 classes de um classificador Extreme Learning Machine (ELM), aplicado nas bases NinaPro e IEE. Os resultados indicaram que foi possível recuperar a taxa média de acerto para 2 canais contaminados com ruído branco aditivo em -30dB, de um total de 12 canais, de 7,28% para 68,34% em 4 indivíduos não amputados e de 15,07% para 43,67% em 9 indivíduos amputados.