Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Duarte, Anaí |
Orientador(a): |
Dias, Johnny Ferraz |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/119121
|
Resumo: |
GSR ou Gunshot Residues são partículas microscópicas de resíduos provenientes da descarga de uma arma de fogo e que, em geral, ficam depositadas pelo corpo do atirador e aos arredores da cena do crime. Este trabalho tem como objetivo empregar as técnicas de PIXE (Particle-Induced X-ray Emission) convencional e -PIXE na análise da munição e GSR gerados por disparo de arma de fogo, utilizando munição de fabricação brasileira. O estudo foi dividido em duas etapas, sendo que na primeira etapa foi utilizada a técnica PIXE no estudo da composição elementar de todos os componentes (estojo, espoleta, pólvora, projétil e camisa) de dois cartuchos distintos virgens, ou seja, antes do disparo com a arma de fogo. Na segunda etapa foram efetuados os ensaios de disparo com arma de fogo, utilizando os mesmos tipos de cartuchos analisados na primeira etapa. As partículas foram coletadas e analisadas por μ-PIXE. As amostras foram irradiadas com feixes de prótons, empregando diferentes parâmetros (energia e corrente), o que depende das amostras em estudo e da técnica utilizada. Para tal fim, foi utilizado o acelerador Tandetron (modelo TN-4130-HC) disponível no Laboratório de Implantação Iônica (IF-UFRGS). Dois diferentes tipos de munição foram analisadas: CHOG e EXPO +P+. Os elementos presentes nas amostras de espoleta de ambos os tipos de munição são o alumínio, antimônio, bário e chumbo, e em menores quantidades cobre, zinco e ferro (invólucro), além de níquel no caso da munição EXPO +P+. Ambos os estojos são constituídos por cobre e zinco, apresentando adicionalmente uma grande quantidade de níquel e um pouco de ferro na munição EXPO +P+. No projétil da munição CHOG os elementos predominantes são chumbo e antimônio, além de apresentar alumínio e ferro em menores quantidades. Na munição EXPO +P+ o projétil também é constituído por chumbo, antimônio e alumínio, mas o ferro é substituído pelo cobre. As amostras de pólvora de ambos os tipos são compostas por alumínio, silício, enxofre, potássio, cálcio, titânio, cromo, níquel, ferro, cobre e zinco, e essas quantidades foram diferentes para cada tipo de munição. A pólvora CHOG apresentou bário e chumbo adicionalmente. Por último, a camisa do projétil da munição EXPO +P+ apresentou cobre, zinco, níquel, chumbo e ferro. Estes resultados são em maioria condizentes com as especificações do fabricante, a Companhia Brasileira de Cartuchos – CBC. Para a coleta das amostras de GSR, foram efetuados disparos em um anteparo de papel, onde foi fixada uma fita microporosa da marca Missner. Neste estudo, foram utilizados os dois tipos de munição analisados por PIXE. Nos dois tipos de partículas coletadas, foi possível correlacionar a presença de Ba, Pb e Sb na mesma partícula, sendo inequivocamente caracterizadas como partículas de GSR. No entanto, os resíduos apresentaram diferentes características e particularidades. Em partículas do tipo CHOG as principais características observadas foram a diferença de tamanhos, homogeneidade (exceto em alguns pontos) e ausência de formato característico. Nas partículas do tipo EXPO +P+ as características se repetem, exceto no formato que, em geral, se apresentou esférico. Comparando os resultados de PIXE e μ-PIXE, observou-se que há relação entre a munição utilizada e os resíduos de disparo produzidos, mas, no entanto as quantidades dos elementos na munição antes e depois do disparo não possuem correlação, o que pode ser explicado pela distância entre o atirador e o anteparo. Os elementos bário, chumbo e antimônio precisam de altas temperaturas para vaporizar, e não alcançariam efetivamente o anteparo a uma distância de um metro, causando grande variabilidade de concentrações entre as partículas. |