Aprendizado de máquina em tarefas prognósticas de COVID-19 : avaliação de algoritmos de classificação

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Kuhn, Daniel Matheus
Orientador(a): Moreira, Viviane Pereira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/255621
Resumo: Modelos preditivos na área da saúde têm sido investigados por inúmeros trabalhos visando o prognóstico e diagnóstico de pacientes. O cenário emergencial de saúde estabelecido pela pandemia da COVID-19 acentuou o interesse em utilizar modelos preditivos para apoiar a tomada de decisão no contexto clínico hospitalar. Esses modelos podem ser empregados nos mais variados desafios enfrentados pelos profissionais de saúde, promovendo um melhor atendimento, otimizando processos de gestão clínica e alocação de recursos. Este trabalho tem como principal objetivo avaliar algoritmos de Aprendizado de Máquina em três tarefas prognósticas a partir de exames disponíveis na admissão hospitalar. As tarefas avaliadas foram: (i) predição de mortalidade; (ii) predição de necessidade de internação em CTI; e (iii) predição de necessidade de recursos de ventilação mecânica invasiva (VMI). Para subsidiar o estudo, foram utilizados registros de 3795 pacientes internados em dois hospitais brasileiros. Avaliamos seis algoritmos de classificação nas três tarefas supracitadas e aplicamos técnicas de visualização de dados, bem como abordagens de explicabilidade para auxiliar na compreensão dos atributos levados em consideração pelos classificadores durante a predição. Além disso, desenvolvemos uma técnica de visualização baseada na abordagem de explicabilidade SHAP, com o intuito de extrair insights sobre a relação entre os atributos consideradas relevantes pelos modelos preditivos e suas previsões. Os resultados nas tarefas de classificação para os conjuntos de dados utilizados neste trabalho foram promissores. Os maiores escores de sensibilidade foram atingidos pelo algoritmo de regressão logística. As investigações acerca dos fatores levados em consideração pelos classificadores apontaram, recorrentemente, a idade avançada dos pa cientes como o principal fator relacionado à mortalidade. Para a predição de VMI e CTI, atributos relacionados à função respiratória dos pacientes, como baixos índices de satu ração de oxigênio e altos índices de pressão parcial de CO2, também foram elencados como relevantes durante a predição. Por fim, a avaliação cruzada utilizando pacientes de diferentes CTI mostrou que os classificadores são sensíveis às características das popu lações com as quais foram treinados, podendo não generalizar para diferentes unidades hospitalares.