Descoberta do desânimo de alunos em ambientes virtuais de ensino e aprendizagem : um modelo a partir da mineração de dados educacionais

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Fabricia Damando
Orientador(a): Bercht, Magda
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Palavras-chave em Espanhol:
Link de acesso: http://hdl.handle.net/10183/148320
Resumo: A presente pesquisa aborda uma investigação interdisciplinar (Educação e Computação) sobre estudos que estabeleceram como foco a influência da afetividade na educação e sobre como reconhecer o desânimo do aluno em interação em um ambiente virtual de ensino e aprendizagem (AVEA) utilizando mineração de dados educacionais (MDE). A afetividade pode influenciar na aprendizagem do aluno, principalmente com relação aos aspectos negativos, frustrações, sensações de solidão, desânimo, fazendo com que o aluno possa, inclusive, desistir de um curso, tornando-se uma problemática no ensino. Identificar esses aspectos em cursos à distância torna-se desafiador para o professor devido à distância temporal e assincronicidade desse meio. Nos cursos à distância, essa possibilidade pode ser permitida através das análises dos dados das interações do aluno no ambiente, porém, o volume de dados existentes torna-se muito grande para ser analisado pelo professor, fazendo com que seja mais difícil realizar essa identificação. Na busca por identificar o estado de ânimo desanimado, esta tese apresenta um Modelo de Predição do Desânimo baseado em comportamento observável e autorrelato armazenados em AVEA, utilizando regras de associação. Para desenvolver o Modelo de Predição do aluno, as variáveis comportamentais indicadoras do desânimo foram evidenciadas na pesquisa, bem como a utilização dos fundamentos e instrumento de Scherer para identificação dos estados afetivos, mais precisamente do estado de ânimo desanimado, que duram por longos períodos, possibilitando sua identificação após determinados fatos terem ocorrido no processo de aprendizagem, o que possibilitou ter uma metodologia de acompanhamento do aluno. As regras de associação foram descobertas devido ao potencial da MDE, que, além de propiciar a inferência e predição, pode ser usada para fornecer apoio tanto ao professor, no processo de ensino e acompanhamento do aluno, quanto ao aluno, no processo de aprendizagem. Nesse contexto, a pesquisa é aplicada ao processo de ensino e aprendizagem utilizando como procedimento técnico experimentos para coleta de dados. Foram feitos experimentos com aplicação de técnicas computacionais para apoio à inferência e geração do modelo de predição. Em cada experimento onde se aplicou a MDE, as melhores regras foram escolhidas com base nas medidas de interesse e presença do estado de ânimo desanimado. A partir dessas melhores regras, uma validação foi realizada em um novo experimento propondo o Modelo de Predição do aluno desanimado em interação no AVEA Moodle. Além de apresentar o Modelo de Predição do Aluno Desanimado, este modelo foi implementado e integrado como ferramenta computacional à plataforma Moodle. A pesquisa justifica-se na medida em que apresenta inovação tecnológica para investigar a influência da afetividade na aprendizagem dentro do contexto da Educação a Distância (EAD) e aplica técnicas computacionais desenvolvendo um Modelo de Predição do Aluno Desanimado, que fornece para o professor uma visão geral do modelo e melhor acompanhamento de seus alunos, através de dashboard, contribuindo na sua prática docente. Logo, a tese apresenta como destaque inovador um produto de pesquisa com utilidade na prática docente no ensino superior, principalmente em cursos EAD, para o reconhecimento de aspectos relacionados à afetividade no contexto educacional. Através da ferramenta computacional, um melhor acompanhamento de alunos desanimados em interação em AVEA pode ser feito pelo professor, permitindo a este fomentar uma metodologia de acompanhamento desses alunos, a fim de minimizar futuras evasões, bem como desistências em cursos e disciplinas, beneficiando a comunidade acadêmica.