Uma abordagem fuzzy na detecção automática de mudanças do uso do solo usando imagens de fração e de informações de contexto espacial

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Zanotta, Daniel Capella
Orientador(a): Haertel, Vitor Francisco de Araújo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/27039
Resumo: Nesta dissertação está proposta uma metodologia para fins de detecção de mudanças do uso do solo em imagens multitemporais de sensoriamento remoto. Em lugar de classificar os pixels de imagens que cobrem uma cena, em duas classes exaustivas e mutuamente excludentes (mudança, não-mudança), propõe-se adotar uma abordagem do tipo fuzzy, na qual são estimados os graus de pertinência às classes mudança e não-mudança. Com este objetivo adota-se aqui uma abordagem em nível de sub-pixel na estimação dos graus de pertinência para cada pixel. Esta abordagem se mostra mais adequada para fins de modelagem do que ocorre em cenas naturais, onde as alterações que acontecem ao longo de um período de tempo tendem a apresentar uma variação contínua em lugar de discreta. Em uma segunda etapa, os graus de pertinência estimados recebem um ajustamento adicional por meio da introdução de informações de contexto espacial. A metodologia proposta foi testada por meio de três experimentos, um empregando uma imagem sintética e dois utilizando imagens reais. A partir da análise quantitativa dos resultados e comparação com estudos semelhantes, comprova-se a adequação da metodologia proposta.