Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Pinheiro, Leonardo |
Orientador(a): |
Barbosa, Marcia Cristina Bernardes |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/165404
|
Resumo: |
A água, por ser a substância de fundamental importância para a existência de vida, é alvo de diversos estudos, principalmente, ao longo das últimas décadas. Apesar de bastante conhecida, a água é uma substância com diversos comportamentos singulares, classificadas em geral como anomalias da água. Com a intenção de descrever tais anomalias, diversos modelos de água para estudos computacionais foram desenvolvidos até hoje, embora nenhum seja capaz de descrever todas as anomalias conhecidas. Baseados em modelos atomísticos de água, surgiram também modelos efetivos de interação entre partículas em um sistema de apenas uma espécie, com a ideia de generalizar o estudo sobre anomalias. Nossos estudos de Dinâmica Molecular e Monte Carlo são realizados em um sistema de partículas interagindo através de potenciais efetivos, compostos por duas escalas de comprimento: um ombro repulsivo a curtas distâncias e a outra sendo uma escala variável, que pode ser repulsiva ou fortemente atrativa, dependendo dos parâmetros utilizados. A análise mostra que o sistema apresenta comportamento anômalo. As regiões de anomalias de densidade, difusão e estruturais encolhem no diagrama de fase de pressão versus temperatura à medida que o sistema se torna mais atrativo. Uma transição líquido-líquido é formada com o aumento do poço de atração. Encontramos que a transição de fase gás-líquido é do tipo Ising em 3 dimensões (3D) para todos os potenciais e sua temperatura crítica aumenta com o aumento da atração. Nenhum comportamento tipo Ising 3D para a transição de fase líquido-líquido foi detectado nas simulações Monte Carlo, o que pode estar relacionado à presença de fases amorfas estáveis. Com relação a sistemas em confinamento, usando Monte Carlo, estudamos o transporte através de nanotubos. Posicionando dois volumes de controle com densidades diferentes, um em cada abertura do nanotubo, induzimos o transporte de partículas através do nanotubo confinante. As partículas do sistema interagem através de um potencial efetivo de duas escalas de comprimento. Analisamos uma família de três potenciais, onde variamos a escala de comprimento menor, desde um ombro repulsivo até um pequeno poço de atração. O estudo mostra que o sistema se configura em camadas no interior do nanotubo e que o transporte apresenta uma sequência de mínimos e máximos, a medida que o raio interno do nanotubo é reduzido, o que caracteriza um comportamento anômalo, já que se espera apenas uma redução no transporte a medida que o espaço interno do nanotubo diminui. Tal comportamento descrito para o transporte, e também a formação de camadas, apenas não são encontrados para o potencial com o poço atrativo. Com relação à estrutura e às propriedades de transporte, as partículas confinadas não diferem sob as mesmas condições para as duas geometrias empregadas. Através da análise da energia de interação das partículas confinadas, verificamos também que a origem da formação de camadas e o comportamento distinto do transporte se deve não apenas ao fato da existência de duas escalas de comprimento no potencial de interação mas também à presença de uma barreira de energia significativa entre essas escalas. |