Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Araujo, Jorge Paulo de |
Orientador(a): |
Souza, Nali de Jesus de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/2796
|
Resumo: |
Nesta tese mostramos que uma função de custo contínua e uma tecnologia uniproduto, convexa, monôtona não-crescente e regular implicam que a função de custo mínimo é semicontínua superior em relação ao produto e que a demanda por insumos é fechada. Se a imagem da tecnologia for compacta então a função de custo mínimo é contínua e a demanda por insumos é hemicontínua superior e valor-compacto em relação ao produto. Se a tecnologia possuir a propriedade de ser localmente não-disjunta então a função de custo mínimo é contínua e a demanda por insumos é hemicontínua superior e valorcompacto em relação ao produto. Se a função de custo for monôtona não-decrescente, semicontínua inferior em relação aos contornos inferiores e a tecnologia for uniproduto, convexa, monótona não-crescente, regular, fechada com imagem compacta então a função de custo mínimo é semicontínua inferior em relação ao produto e a demanda ampliada por insumos é hemicontínua superior e valor-compacto em relação ao produto. Se a tecnologia possuir a propriedade de ser localmente não-disjunta então o mesmo resultado é válido. Introduzimos as noções de função monótona não-decrescente e semicontínua inferior em relação aos contornos num espaço topológico ordenado, de correspondência localmente não-disjunta e de demanda ampliada. Mostramos que funções com a propriedade anterior são semicontínuas inferiores e que correspondências convexas localmente não-disjuntas são hemicontínuas inferiores. |