Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Dalpiaz, Felipe Lewgoy |
Orientador(a): |
Rocha, Luiz Alberto Oliveira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/156491
|
Resumo: |
A presente dissertação desenvolve um estudo numérico em duas direções espaciais com o objetivo de encontrar a configuração de geometrias acopladas a aletas de alta condutividade térmica em forma de “T” que resultam na menor resistência ao fluxo de calor utilizando o método Design Construtal. Como restrição as áreas de ambos os componentes, o corpo sólido onde há geração de calor e a aleta, são mantidas constantes. A equação diferencial da difusão do calor bidimensional, em regime permanente e propriedades constantes, com as condições de contorno, foram solucionadas pelo método dos elementos finitos utilizando o programa MATLAB ®, mais precisamente a ferramenta PDETOOL, Partial Differential Equations Tool. Em outras palavras, minimizar a resistência térmica ao fluxo de calor gerado para uma melhora na refrigeração, variando somente os comprimentos e larguras que formam o sólido de baixa condutividade térmica e a aleta composta por material de alta condutividade térmica. Para cada geometria proposta foram avaliadas todas as possibilidades geométricas dentro do domínio estabelecido Três geometrias foram propostas para os sólidos geradores de calor: retangular, trapezoidal e semicircular, todas acopladas com a aleta na forma de T. Além dos graus de liberdade, também foram avaliados o efeito dos seguintes parâmetros adimensionais: (condutividade térmica da aleta), (fração de área), (fração de área auxiliar) e ℎ . O melhor design encontrado é aquele que distribui melhor as imperfeições, ou seja, a geometria que distribui melhor os pontos de temperatura máxima. Os resultados reforçam, ainda, o entendimento de que sistemas multicomponentes devem ser estudados globalmente e não cada componente individualmente. Para a geometria retangular houve uma melhora de 66% no desempenho quando comparados os desempenhos da primeira para a última otimização. O melhor desempenho obtido para a geometria trapezoidal superou em aproximadamente 3,5% o desempenho da geometria retangular. Por fim a geometria semicircular atingiu o melhor desempenho entre as geometrias estudadas, superando em 40% o resultado atingido pela geometria trapezoidal. |