Statistical learning and causal effects : an application to Bolsa Família Program

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, Jeudi Rufino Fernandes da
Orientador(a): Ziegelmann, Flavio Augusto
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/274202
Resumo: Neste trabalho realizamos o estudo de métodos de aprendizagem estatística (“statistical learning methods”) e métodos de aprendizado de máquina (“machine learning methods”) para efeitos heterogêneos de tratamento. Tais tipos de efeitos são também chamados de efeito médio de tratamento condicional. Estudamos métodos gerais (“offthe-shelf methods”) e aqueles ajustados para inferência causal: arvore causal, floresta causal e floresta aleatória causal. Além disso, exploramos um desses métodos em um contexto de aplicação empírica. Exploramos os métodos de florestas causais para procurar efeitos heterogêneos de tratamento de uma política pública. Avaliamos os efeitos heterogeneous do programa Bolsa Famíia.