Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Silva, Jeudi Rufino Fernandes da |
Orientador(a): |
Ziegelmann, Flavio Augusto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/274202
|
Resumo: |
Neste trabalho realizamos o estudo de métodos de aprendizagem estatística (“statistical learning methods”) e métodos de aprendizado de máquina (“machine learning methods”) para efeitos heterogêneos de tratamento. Tais tipos de efeitos são também chamados de efeito médio de tratamento condicional. Estudamos métodos gerais (“offthe-shelf methods”) e aqueles ajustados para inferência causal: arvore causal, floresta causal e floresta aleatória causal. Além disso, exploramos um desses métodos em um contexto de aplicação empírica. Exploramos os métodos de florestas causais para procurar efeitos heterogêneos de tratamento de uma política pública. Avaliamos os efeitos heterogeneous do programa Bolsa Famíia. |