Bayesian BDI agents and approaches to desire selection

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Luz, Bernardo Martins da
Orientador(a): Vicari, Rosa Maria
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/78473
Resumo: O raciocínio realizado em agentes BDI envolve essencialmente manipular três estruturas de dados representando suas crenças, desejos e intenções. Crenças de agentes BDI tradicionais não representam incerteza, e podem ser expressas como um conjunto fechado de literais ground. As restrições que indicam se um dado desejo é viável e pode ser adotado como uma intenção em agentes BDI tradicionais podem ser representadas como expressões lógicas sobre crenças. Dado que Redes Bayesianas permitem que representem-se informações com incerteza probabilisticamente, agentes BDI bayesianos as empregam para suportar incerteza em suas crenças. Em agentes BDI bayesianos, crenças representadas em Redes Bayesianas referem-se a estados de variáveis de eventos, possuindo probabilidades dinâmicas individuais que referem-se à incerteza. Os processos the constituem o raciocínio neste modelo de agente requerem mudanças a fim de acomodar esta diferença. Dentre estes processos, este trabalho concentra-se especificamente na seleção de desejos. Uma estratégia prévia para seleção de desejos é baseada em aplicar um limiar a probabilidades de crenças. Entretanto, tal abordagem impede que um agente selecione desejos condicionados em crenças cujas probabilidades estejam abaixo de um certo limiar, mesmo que tais desejos pudessem ser atingidos caso fossem selecionados. Para lidar com esta limitação, desenvolvemos três abordagens alternativas para seleção de desejos sob incerteza: Ranking Probabilístico, Loteria Viciada e Seleção Multidesejos Aleatória com Viés. Probability Ranking seleciona um desejo usando uma lista de desejos ordenados em ordem decrescente de probabilidade de pré-condição. Loteria Viciada seleciona um desejo usando um valor numérico aleatório e intervalos numéricos – associados a desejos – proporcionais às probabilidades de suas pré-condições. Seleção Multidesejos Aleatória com Viés seleciona múltiplos desejos usando valores numéricos aleatórios e considerando as probabilidades de suas pré-condições. Apresentamos exemplos, incluindo o agente Vigia, assim como experimentos envolvendo este, para mostrar como essas abordagens permitem que um agente às vezes selecione desejos cujas crenças pré-condições possuem probabilidades muito baixas.