Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Silva, Luis Fernando Maia Santos |
Orientador(a): |
Comba, Joao Luiz Dihl |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/25512
|
Resumo: |
Malhas simpliciais são utilizadas em várias áreas da Computação Gráfica e Engenharia, como por exemplo, em vizualização, simulação, prototipação, além de outras aplicações. Este tipo de malha é, geralmente, utilizada como aproximações discretas de espaços contínuos, onde eles oferecem representações flexíveis e eficientes. Muito esforço é gasto visando gerar malhas de boa qualidade, porém, em alguns casos as malhas acabam sendo modificadas. Entretanto, este tipo de operação é geralmente custosa e inflexível, o que pode resultar na geraão de malhas bem diferentes das originais. A habilidade de manipular cenas dinâmicas revela-se um dos problemas mais desafiadores da computação gráfica. Este trabalho propõe um método alternativo para atualizar malhas simpliciais que vai além de mudanças geométricas e topológicas. Tal método explora uma das propriedade das Tringulações de Delaunay com Pesos, que permite a usá-las para definir implicitamente as relações de conectividade de uma malha. Ao contrário de manter as informações de conectividade explicitamente, a atual abordagem simplesmente armazena uma coleção de pesos associados a cada vértice. Além disso, criamos um algoritmo para calcular uma Tringulação de Delaunay com Pesos a partir de uma dada triangulação. O algoritmo consiste em uma busca em largura que atribui pesos aos vértices, e uma estratégia de de subdivisão para assegurar que a triangulação reconstruída será correspondente à original. Este método apresenta diversas aplicações e, em particular, permite a criação de um sistema simples de realizar combinação entre triangulações, que será ilustrada com exemplos em 2D e 3D. |