Raciocínio probabilístico aplicado ao diagnóstico de insuficiência cardíaca congestiva (ICC)

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Silvestre, André Meyer
Orientador(a): Vicari, Rosa Maria
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/12679
Resumo: As Redes Bayesianas constituem um modelo computacional adequado para a realização de inferências probabilísticas em domínios que envolvem a incerteza. O raciocínio diagnóstico médico pode ser caracterizado como um ato de inferência probabilística em um domínio incerto, onde a elaboração de hipóteses diagnósticas é representada pela estratificação de doenças em função das probabilidades a elas associadas. A presente dissertação faz uma pesquisa sobre a metodologia para construção/validação de redes bayesianas voltadas à área médica, e utiliza estes conhecimentos para o desenvolvimento de uma rede probabilística para o auxílio diagnóstico da Insuficiência Cardíaca (IC). Esta rede bayesiana, implementada como parte do sistema SEAMED/AMPLIA, teria o papel de alerta para o diagnóstico e tratamento precoce da IC, o que proporcionaria uma maior agilidade e eficiência no atendimento de pacientes portadores desta patologia.