Decomposição de coeficientes trigonométricos para a redução de área e potência em arquiteturas FFT híbridas na base 2

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Ghissoni, Sidinei
Orientador(a): Reis, Ricardo Augusto da Luz
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
CMM
Link de acesso: http://hdl.handle.net/10183/67864
Resumo: A crescente utilização de equipamentos móveis que empregam a transformada rápida de Fourier (FFT) nas operações de sinal digital pode ter seu uso restrito devido ao comprometimento da durabilidade da bateria e de suas dimensões. Estas possíveis limitações de uso fazem crescer a necessidade do desenvolvimento de técnicas que visam à otimização nos três requisitos básicos de projeto digital: dissipação de potência, área e atraso. Para tanto, é abordado neste trabalho um método que realiza a implementação de arquiteturas FFT com ênfase na otimização através da decomposição dos coeficientes trigonométricos. No cálculo da FFT, as borboletas desempenham um papel central, uma vez que permitem o cálculo de termos complexos. Neste cálculo, que envolve multiplicações dos dados de entrada com coeficientes trigonométricos apropriados, a otimização das borboletas pode contribuir diretamente para a redução de potência e área. Na técnica proposta são analisados quais são os coeficientes trigonométricos existentes na arquitetura FFT utilizada como base e a escolha para decomposição será o que apresentar o menor custo de implementação em hardware. A decomposição de um coeficiente deve garantir a reconstituição de todos os demais coeficientes necessários para a implementação de toda a arquitetura FFT. Assim, a decomposição diminui o número de coeficientes necessários para reconstruir a FFT original. O conjunto dos novos coeficientes gerados são implementados com apenas somadores\subtratores e deslocamentos através de Multiplicação de Matrizes Constantes (CMM – Constant Matrix Multiplication), associados a um sistema de controle com multiplexadores que controlam o caminho para a correta operação da FFT. As implementações dos circuitos somadores/subtratores são realizadas com métrica no nível de portas lógicas, visando menor atraso e dissipação de potência para topologias com somadores dos tipos CSA (Carry Save Adder) e Ripple carry. Os resultados apresentados pelo método proposto, quando comparados com soluções da literatura, são significativamente satisfatórios, pois minimizaram a dissipação de potência e área em 30% e 24% respectivamente. Os resultados apresentam também a redução de componentes somadores necessários para a implementação de arquiteturas FFTs.