Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Leotti, Vanessa Bielefeldt |
Orientador(a): |
Camey, Suzi Alves |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/80066
|
Resumo: |
A razão de chances (RC) e o risco relativo (RR) são medidas de associação utilizadas em epidemiologia. Existem discussões sobre desvantagens da RC como medida de associação em delineamentos prospectivos, e que nestes o RR deve ser utilizado, especialmente se o desfecho for comum (>10%). No caso de desfechos binários e dados independentes, alternativas ao uso da RC estimada pela regressão logística foram propostas. Uma delas é o modelo log-binomial e outra é a regressão de Poisson com variância robusta. Tais modelos permitem identificar fatores associados ao desfecho e estimar a probabilidade do evento para cada unidade observacional. Em relação à estimação das probabilidades, a regressão de Poisson robusta tem como desvantagem a possibilidade de estimar probabilidades maiores que 1. Isto não ocorre com o modelo log-binomial, entretanto, o mesmo pode enfrentar problemas de convergência. Alguns autores recomendam que o modelo log-binomial seja a primeira escolha de análise, deixando-se o uso da regressão de Poisson robusta apenas para as situações em que o primeiro método não converge. Em 2010, o uso de metodologia bayesiana foi proposta como maneira de solucionar os problemas de convergência e simulações comparando com as abordagens anteriores foram procedidas. No entanto, tais simulações tiveram limitações: preditores categóricos não foram considerados; apenas um tamanho de amostra foi avaliado; apenas a mediana e o intervalo de credibilidade de caudas iguais foram considerados na abordagem bayesiana, quando existem outras opções; e a principal delas, as medidas comparativas foram calculadas para os coeficientes do modelo e não para o RR. Nesta tese, tais limitações foram superadas, e encontrou-se outro estimador bayesiano para o RR, a moda, com menor viés e erro quadrático médio em geral. Os modelos citados anteriormente são apropriados para análise de observações independentes, entretanto há casos em que esta suposição não é válida, como em ensaios clínicos randomizados em cluster ou modelagem multinível. Apenas cinco trabalhos foram encontrados com propostas de como estimar o RR para esses casos. Quando o interesse é a estimação do RR com desfechos politômicos, apenas dois trabalhos apresentaram sugestões. Conseguiu-se neste trabalho estender a metodologia bayesiana proposta para desfechos binários e dados independentes para lidar com essas duas situações. |