Sobre a existência de medidas invariantes para aplicações monótonas por partes

Detalhes bibliográficos
Ano de defesa: 1988
Autor(a) principal: Araujo, Jorge Paulo de
Orientador(a): Brietzke, Eduardo Henrique de Mattos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/126718
Resumo: A proposta principal desta. dissertação é provar a existência de medidas invariante absolutamente contínuas para uma clas$e de funções monótonas por partes com um número finito de descontinuidade mas o resultado pode ser estedido para funções monótonas por partes com um número infini to de descontinuidades. O método de prova explora a existência de pontos fixos para o operador de Perron- Frobenius e utiliza o Teorema de Helly e o Teorema Ergódico de Kakutani-Yosida.