Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Rocha, Vinicius Moraes Kieling da |
Orientador(a): |
Amico, Sandro Campos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/195760
|
Resumo: |
Neste trabalho, analisou-se a degradação térmica de duas resinas poliésteres insaturadas ortoftálicas, uma comercial e outra sendo uma alternativa. Por conta destes materiais serem usados em lugares fechados, por questões de segurança, é importante ter o conhecimento da sua degradação térmica. Sendo que o foco deste trabalho foi analisar a estabilidade térmica, a cinética de degradação e a determinação dos mais prováveis mecanismos de degradação. A estabilidade térmica foi determinada utilizando o método de Doyle para a faixa de temperatura entre 25 e 800 °C. A cinética de degradação foi baseada na utilização dos métodos de Friedman, Flynn-Wall-Ozawa, Kissinger e o de Coats-Redfern modificado. Para a determinação dos mais prováveis mecanismos de degradação, foram utilizados os métodos de Criado, Coats-Redfern e também curvas mestras na forma diferencial. A simulação das curvas termogravimétricas (TGA), da cinética de degradação, dos mais prováveis mecanismos de degradação e da predição do tempo de vida das resinas foi realizada no software Netzsch – Thermokinetics. Os valores para o Modelo Integral de Decomposição de Temperatura (IPDT) para a resina alternativa foram maiores para todas as taxas de aquecimento quando comparado com a resina tradicional, logo apresentando maior estabilidade térmica. E as energias de ativação (Ea) foram maiores para a resina tradicional. Os mais prováveis mecanismos de degradação foram do grupo A (nucleação e crescimento) pelo método de Criado, do grupo D (difusão) para o método de Coats-Redfern, e dos grupos D (difusão) e L (cisão aleatória) pelo método de curvas mestras. Na simulação das curvas de TGA, houve divergências entre as curvas experimentais e sumuladas nas regiões de início e fim do processo de degradação. Na simulação das Ea, os valores foram muito próximos dos calculados manualmente para as duas resinas estudadas. Para a simulação dos mais prováveis mecanismos de degradação, o grupo mais provável foi o D (difusão), o que coincidiu com o que foi determinado pelo método de Coats-Redfern e por meio de curvas mestras. Quando simulado o tempo de vida da resina das resinas, a resina alternativa mostrou perder menos massa quando comparada com a resina tradicional para todas as isotermas, exceto para a de 300 °C, sendo esta a temperatura limite de utilização. Por fim, foi definido que o processo de degradação das duas resinas se divide em difusão (para valores de conversão até 0,5) e, posteriormente, cisão aleatória (para valores de conversão acima de 0,5). |