Condensação de Bose-Einstein para um gás de bósons não interagentes em confinamentos bidimensionais em automatos celulares complexos

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Calovi, Daniel Schardosim
Orientador(a): Prado, Sandra Denise
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/11018
Resumo: Neste trabalho estudamos as propriedades termodinâmicas da Condensação de Bose-Einstein (CBE) para um gás de bósons não-interagentes confinado em potenciais bidimensionais V(x,y) que apresentam classicamente, um caos-suave (soft chaos), isto é, um espaço de fases compartilhado por ilhas de estabilidade e mares de caos. O formalismo estatístico mais apropriado para os nossos objetivos é o descrito pelo ensemble canônico, de forma que o número de partículas N é mantido fixo em cada simulação. Nosso principal objetivo é investigar se o caos pode caracterizar algum comportamento distinto nas propriedades do Condensado de Bose-Einstein. Para comparação dos nossos resultados com a literatura, mostramos em detalhes todos os cálculos para o oscilador bidimensional e a caixa bidimensional suavizados1. No potencial harmônico a suavização implica em um amortecimento da freqüência de oscilação, enquanto que para a caixa bidimensional, a suavização implica em um aumento da área da caixa quando N é aumentado. Esse recurso é necessário, uma vez que não se define rigorosamente uma transição de fase em sistemas com dimensão menor que três. Embora a suavização pareça ser mais um recurso matemático que físico, ela descreve bem a CBE em potenciais suaves. Para estudar o efeito do caos na CBE, escolhemos dois potenciais: i) O potencial Nelson, que é um potencial parabólico que descreve essencialmente dois osciladores harmônicos x e y com um termo de acoplamento não-linear que origina caos; ii) O potencial quártico, cuja base é mais achatada parecendo-se mais com uma caixa. Simulamos também a situação em que a partícula confinada é sujeita a um campo magnético perpendicular uniforme ao longo do eixoz. Os nossos resultados mostram que estatísticas que são bilineares em relação à densidade de energia do potencial de confinamento, como a variância do número de ocupação do estado fundamental, exibem assinatura do caos subjacente.