Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Demarco, Henrique |
Orientador(a): |
Cassel, Ricardo Augusto |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/259215
|
Resumo: |
A programação da produção é atividade primordial dentro das indústrias e passa a ser mais importante quanto mais complexa é a operação de cada empresa. À medida que o ambiente produtivo aumenta em recursos, produtos e restrições, torna-se mais difícil alcançar a programação ótima dada a quantidade de possibilidades e combinações distintas. A execução desta atividade com o devido cuidado pode gerar economia de recursos, maximização das horas de maquinário convertidas em produção, entre outros benefícios. O uso de modelos matemáticos e computadores para esta atividade possibilita testar uma grande quantidade de combinações das mais diferentes variáveis e, no limite, encontrar a proposta de solução ótima e que faz a melhor alocação dos recursos escassos. Dentro deste escopo, o presente trabalho apresenta um modelo matemático, acompanhado do código computacional em Python. Este é aplicável em indústrias que utilizam máquinas paralelas heterogêneas de capacidade finita, com setups dependentes (tanto em custo quanto em tempo) da sequência de programação, com produtos em estágio único de processamento, observando restrições de estoque de componentes, horas-homem disponíveis e capacidade de armazenagem de produtos acabados. Complementando as restrições mencionadas, o modelo tem por objetivo reduzir o custo de execução da programação. Para isto, considera os custos de setup, os custos de manutenção de estoque, a penalidade financeira por não atender o pedido no prazo especificado pelo cliente e o custo de produção do item vendido considerando que as máquinas são heterogêneas e, por consequência, apresentam custos diferentes para produzir o mesmo item. O modelo executado resolveu o problema para uma indústria com 18 máquinas, 350 produtos acabados, 4576 componentes, 2 macro períodos de programação, cada um contendo 5 micro períodos variáveis. A solução ótima foi encontrada em 10h de processamento utilizando um computador com processador Intel i5-2410M 2.30GHz quad-core com 6GB de memória RAM, solver Gurobi, tendo sido programado em linguagem Python com a biblioteca PuLP. Muito embora este tempo total de processamento possa ser considerado alto para uma aplicação prática, o modelo atingiu o gap de 1% do melhor resultado em aproximadamente 2h. |