Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Pellizzaro, José Antônio |
Orientador(a): |
Gamermann, Daniel |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/206682
|
Resumo: |
O sucesso da teoria dos grafos para descrever sistemas complexos, bem como a onipresença destes, deu muito destaque a elaboração de métodos eficientes para sua analise. No entanto, varias questões continuam em aberto. Uma delas, a qual nos dedicamos neste trabalho, é a obtenção das comunidades presentes nessas redes. Muito embora não exista um consenso formal sobre sua definição, a presença de comunidades vem da ideia intuitiva de que nós formam subgrupos dentro da rede. Neste sentido, muitos algoritmos diferentes foram propostos para identificar tais grupos. Aqui nós atacamos este problema em duas frentes: primeiro, desenvolvemos um novo algoritmo baseado na função Surprise e segundo, criamos um novo benchmark, um conjunto de redes artificiais com comunidades préestabelecidas, para comparar a performance de diferentes algoritmos. O nosso algoritmo, chamado Surpriser, foi testado contra sete outros métodos da literatura em três benchmarks diferentes. Nós mostramos que métodos baseados na Surprise são os mais consistentes nos diferentes benchmarks e que o nosso Surpriser leva uma vantagem sobre os últimos. Finalmente, mostramos que o nosso benchmark é o mais difícil dos três, pois poucos algoritmos conseguem resolve-lo. |