Previsão do tempo de viagens de transporte seletivo sem parada fixa através de redes neurais artificiais recorrentes

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Michel, Fernando Dutra
Orientador(a): Cybis, Helena Beatriz Bettella
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/178365
Resumo: Os sistemas de transporte público por ônibus têm sido cada vez mais relevantes para o desenvolvimento das cidades. Técnicas para melhorar o planejamento e o controle da operação diária dos serviços de ônibus apresentaram melhorias significativas ao longo dos anos, e a previsão do tempo de viagem desempenha um importante papel no planejamento e nas estratégias da operação diária. A antecipação dos tempos de viagem ajuda os planejadores e controladores a evitar os vários problemas que surgem durante a operação diária da linha de ônibus. Ela também permite manter os usuários informados para que eles possam planejar com antecedência a sua viagem. Vários estudos relacionados à previsão do tempo de viagem podem ser encontrados na literatura. Devido a sua dificuldade intrínseca, o problema foi abordado por diferentes técnicas. Resultados numéricos de estudos demonstram o potencial uso de redes neurais em relação a outras técnicas. No entanto, a literatura não apresenta aplicações que incorporem uma retroalimentação das informações contidas em séries temporais, como é feito por redes neuronais recorrentes. A maioria dos estudos na literatura tem sido realizada com dados de cidades específicas e com linhas de ônibus com paradas fixas. A situação que surge em linhas de ônibus sem paradas fixas operadas com micro-ônibus apresenta uma dinâmica diferente dos estudos de caso da literatura Além disso, os estudos existentes não usam o gráfico de marcha como um instrumento de apoio para a previsão do tempo de viagem em ônibus. Nesta tese, estuda-se o problema da previsão do tempo de viagem para linhas de micro-ônibus sem paradas fixas, utilizando as informações básicas do gráfico de marcha. O modelo proposto é baseado em redes neurais recorrentes. Os dados de entrada incluem: (i) a hora de início da viagem do ônibus, (ii) sua posição atual em coordenadas GPS, (iii) o tempo atual e (iv) a distância percorrida após um minuto. As redes são treinadas com dados de uma linha de micro-ônibus da cidade de Porto Alegre, Brasil. Os dados correspondem ao ano de 2015. Os modelos fornecem previsões para a distância percorrida minuto a minuto e para uma janela de tempo de 30 minutos. O modelo desenvolvido foi treinado com um conjunto abrangente de dados de dias úteis, incluindo períodos de pico e fora de pico. Os dados de treinamento não desconsideraram informações de qualquer dia devido à ocorrência de eventos especiais. Concluiu-se que os modelos de redes neurais recorrentes desenvolvidos são capazes de absorver a dinâmica do movimento dos micro-ônibus. A informação produzida apresenta um nível adequado de precisão a ser utilizado para informar os usuários. Também é adequada para planejadores e controladores da operação, pois pode ajudar a identificar situações problemáticas em janelas de tempo futuras.