Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Barriatto, Leonardo Calil |
Orientador(a): |
Petry, Adriane Prisco |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/179414
|
Resumo: |
Simulações numéricas do escoamento atmosférico em microescala constituem o foco principal deste estudo. Estas simulações são abordadas tendo em vista aplicações para o setor eólico, em especial para avaliações de produção de energia em parques eólicos. Existem diversas categorias de incertezas associadas às estimativas de produção de energia para um projeto eólico, mas na maioria dos casos, a incerteza associada ao modelo de escoamento é a maior e mais relevante de todas. Dentro do setor eólico, o termo “modelo de escoamento” refere-se à ferramenta numérica utilizada para extrapolar o recurso eólico medido na posição das torres anemométricas (e sensores remotos) até as posições projetadas para os aerogeradores. Diversos autores sugerem através de estudos comparativos que os modelos tipo “CFD RANS k-ε” atualmente representam o “estado da arte” para aplicações em parques eólicos e são os mais utilizados comercialmente no setor. Contudo, o escoamento atmosférico livre é intrinsicamente turbulento, e a dinâmica dos escoamentos turbulentos é um campo científico que ainda não foi totalmente dominado pelo conhecimento humano. O presente estudo demonstra que a maioria dos “modelos de escoamento” atualmente disponíveis possuem pontos fracos, em especial quando aplicados em simulações do escoamento atmosférico livre sobre áreas com topografia e rugosidade complexas Uma das fraquezas presentes na maioria dos modelos de microescala para escoamento atmosférico é a “incapacidade” de simular com precisão o escoamento que ocorre durante períodos de “estabilidade atmosférica”. Diversos locais com elevado potencial eólico apresentam ciclos durante os quais as características do escoamento são afetadas pela ocorrência de estratificação térmica dentro da Camada Limite Atmosférica. Tendo como objetivo principal melhorar as simulações do escoamento nestas condições, propõe-se através deste estudo algumas modificações na modelagem “CFD RANS k-ε” tradicionalmente empregada. Dentre estas, destacam-se a inclusão de um perfil estratificado de temperatura potencial como condição de contorno, a inclusão dos efeitos das forças de empuxo no equacionamento “k-ε” e a solução simultânea das equações para balanço de energia e para o fluxo de temperatura potencial. Este modelo foi chamado de “RANS estável”. Para validação deste modelo foram utilizadas cinco torres anemométricas instaladas em um local com topografia complexa. Estas torres foram montadas e instrumentadas conforme as melhores práticas internacionais Os dados anemométricos registrados por essas torres demonstram a presença de ciclos diários de estabilidade atmosférica. Os erros de previsão cruzada foram calculados comparando-se as previsões de cada modelo com as medições reais registradas na posição das torres. O erro global médio de previsão cruzada entre torres anemométricas obtido com a composição dos modelos RANS “estável + neutro” foi de 3,8% enquanto o erro obtido apenas com o modelo RANS k-ε tradicional foi de 5,2%. Para o modelo linear WAsP, amplamente utilizado no setor eólico, o erro foi de 7,1%. Além dos erros de previsão cruzada entre torres, os perfis verticais de velocidade e os fatores de aceleração direcionais obtidos com a composição dos modelos RANS “estável + neutro” também sugerem que esta é uma alternativa versátil e promissora para capturar os ciclos de estabilidade atmosférica utilizando simulações numéricas em regime permanente. |